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Abstract—Breast cancer is the second most common cancer
overall and the leading cause of cancer deaths in women.
Mammography is, at present, the only viable method for detecting
most of tumors early enough for effective treatment. The secret
of setting up the accurate diagnosis is to detect and understand
the most subtle signs of breast lesions. Analysis of asymmetry
between the left and right mammograms can provide clues
about the presence of early signs of tumors. In this work we
present an automated procedure for bilateral asymmetry detec-
tion composed of the following steps: (1) mammography density
analysis and fibro-glandular disc detection through adaptive
clustering techniques, (2) analysis and implementation of bilateral
asymmetries detection algorithms based on Gabor filters analysis,
(3) use of a linear Bayes classifier with the leave-one-out method
to asses the asymmetry degree of the two breasts, (4) metrological
evaluation of the whole system through random and systematic
measurement uncertainty contributions modeling.

I. INTRODUCTION

Breast cancer is the second most common cancer overall
and the most prevalent cancer among women. Based on
recent statistics from the International Agency for Research
on Cancer [1], breast cancer account for 10.9% of all cancers
diagnosed and ranks as the fifth cause of cancer death in
the world. Although incidence rates are increasing, mortality
rates are stable, representing an improved survival rate. This
improvement can be attributed to effective means for the early
detection as well as to significant improvement in treatment
options, exposure, etc. Mammography is, at present, the only
viable method for detecting most of tumors early enough
for effective treatment, without unnecessary biopsies or other
invasive procedures. Therefore, screening mammography in
women aged 40 to 70 years is currently the effective strategy
to reduce breast cancer mortality. Early detection of invasive
breast cancers is associated with better prognosis than wait-
ing for women to become symptomatic. However, detecting
the early signs of breast cancer is challenging because the
cancerous structures have many features in common with
normal breast tissue. Moreover, the accuracy of interpretation
of screening mammograms is affected by several factors, such
as image quality, the radiologist’s level of expertise, and the
high volume of cases. According to recent statistics, in current
breast cancer screenings, 10%−25% of the tumors are missed
by the radiologists. Computer Aided Detection (CADe) sys-
tems can support radiologists in the role of a second reader [2],
aiding the radiologist in finding the suspicious breast lesions
and distinguishing between what is decidedly negative on a

mammogram, as opposed to what needs regular monitoring
and what requires a needle biopsy. The secret of setting up the
accurate diagnosis is to detect and understand the most subtle
signs of breast lesions [3]. According to the fourth edition of
Breast Imaging Reporting and Data System (BIRADS) [4],
subtle signs of breast cancer are four: calcifications, masses,
architectural distortion, and bilateral asymmetry. The latest
two signs do not necessarily mean that cancer is already
present, but provide clues about the presence of early signs
of tumors. However, a few works have been reported on
the detection of bilateral asymmetry. It may be due to the
fact that bilateral asymmetries are difficult to be identified
because they need a comparison among left and right views
of the two breasts, that is a very difficult task owing to the
natural diversity among breast skin line, orientation, manual
position of the breast during X-ray exposure, etc. In this
work, we present a procedure for bilateral asymmetry detection
composed of the following steps: (1) mammography density
analysis and fibro-glandular disc detection through adaptive
clustering techniques, (2) analysis and implementation of bi-
lateral asymmetries detection algorithms based on Gabor filters
analysis, (3) use of a linear Bayes classifier with the leave-one-
out method to asses the asymmetry degree of the two breasts,
(4) metrological validation of the whole system through the
modeling of the uncertainty contributions estimated in the
specific context.

II. BILATERAL ASYMMETRY

Asymmetry between the left and right mammograms of
a given subject is an important sign used by radiologists
to diagnose breast cancer. Analysis of asymmetry can pro-
vide clues about the presence of early signs of tumors like
parenchymal distortion, small asymmetric bright spots and
contrast, that are not evaluated by other methods [3]. Tumor-
related-asymmetries are those that are changing, enlarging,
those that are palpable or associated with other findings, such
as microcalcifications and architectural distortion [5]. Lau and
Bishof [6] proposed a method for detection of breast tumors
using the asymmetry principle, through measures of bright-
ness, roughness, and directionality. The method was tested
with a set of ten mammograms pairs where asymmetry was
significant for the radiologist’s diagnosis. A sensitivity of 92%
was obtained with 4.9 false positives per mammogram. Miller
and Astley [7] implemented a semiautomated texture-based
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procedure for the segmentation of the glandular tissue and
measures of shape and grey level distribution for the detection
of asymmetry. An accuracy of 86.7% was reported with a
test dataset of 30 screening mammogram pairs. In another
report [8], the same authors presented a method based on mea-
sures of shape, brightness and topology of the fibro-glandular
disc. The method was tested on 104 mammograms pairs and a
classification accuracy of 74% was obtained. Ferrari et al. [5]
used directional filtering with Gabor wavelets. In their method,
which was applied only to MLO views, the fibro-glandular
disc is segmented and the resulting image is decomposed
using a bank of Gabor filters at 12 orientations and four
scales. The Karhunen-Loeve transform is employed to select
the principal components of the filters responses. Variations
in oriented textural patterns are detected from the difference
in rose diagrams of the phase images and additional set of
features are extracted from the fibro-glandular disc. A database
of 80 images containing 20 normal cases, 14 asymmetric cases,
and six architectural distortion cases was used to evaluate the
algorithm. The authors reported classification accuracy rates
of up to 74.4%. Rangayyan et al. [9] extended the method of
Ferrari et al. by including morphological measures to quantify
differences in fibro-glandular-tissue-covered areas in the left
and right breasts, which relate to size and shape; in addition,
the directional data were aligned with reference to the edge of
the pectoral muscle (in MLO views). A sensitivity of 82.6%
and a specificity of 86.4% were obtained in the detection of
bilateral asymmetry with a set of 88 mammograms. In the
following sections we describe in detail a procedure for the
detection of bilateral asymmetry and a sketch of the algorithm
validation.

III. THE DATABASE

This preliminary study has been developed using Screen
Film Mammographic images (SFM) from the Mini-MIAS
Database [10] originally digitized at a spatial resolution of
50 𝜇m and then reduced to 200 𝜇m and 8 bpp. The images
include 22 normal cases and 22 abnormal cases (15 asymme-
tries and 7 architectural distortions).

IV. THE PROPOSED METHODOLOGY

The proposed method is schematized in Fig. 1 and it is
composed of the following steps:

A. breast skin profile identification and pectoral muscle line
orientation extraction;

B. contrast enhancement;
C. segmentation of the fibro-glandular disc;
D. extraction of the oriented pattern in the fibro-glandular

tissue;
E. alignment of the left and right discs according to the

pectoral muscle line orientation;
F. features extraction;
G. pattern classification for the bilateral asymmetry identifi-

cation.

Let us see in details the principal issues regarding the steps
outlined above.
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Fig. 1. A schematic flowchart of the whole algorithm.

A. Breast region identification

The first issue addressed in our procedure is the segmen-
tation of the breast parenchyma from the rest of the image.
In the Medio-Lateral Oblique views (MLO) the procedure is
composed of two stages: the first step extracts the breast region
from the rest of the image (background) using an active con-
tour algorithm, the second step suppresses the pectoral muscle
using histogram thresholding and Hough transform [11]. An
example of the result is shown in Fig. 2(b).

B. Contrast Enhancement

The contrast enhancement of the images is done using the
Contrast Limited Adaptive Histogram Equalization (CLAHE)
technique, which is a special case of the histogram equal-
ization technique that functions adaptively on the image to be
enhanced, preventing over enhancement of noise and reducing
the edge-shadowing effect [12]. Fig. 2(c) shows a MLO view
of the mammogram after contrast enhancement.

C. Segmentation of the fibro-glandular disc

In the bilateral asymmetry evaluation, only the fibro-
glandular disc is usually used, as the Region Of Interest
(ROI), in order to compute the oriented components; this is
due to the fact that most of the directional components, such
as connective tissues and ligaments, exists in this specific
region of the breast [13]. Our method uses an adaptive Spatial
Fuzzy-C-Means (SFCM) clustering, which is an improvement
of the FCM algorithm that incorporates spatial information
reducing the effect of noise and biasing the algorithm toward
homogeneous clustering [14].

Considering a set of 𝑁 data {𝑥𝑖}, 𝑖 = 1, . . . , 𝑁 , a set of 𝐶
classes {𝑐𝑗}, 𝑗 = 1, . . . , 𝐶, and any real number 𝑚 > 1, the
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Fig. 2. Steps for the segmentation and evaluation of the fibro-glandular disc. (a)-(e)

method is based on the minimization of the objective function

𝐽𝑚 =

𝑁∑
𝑖=1

𝐶∑
𝑗=1

𝑢𝑚𝑖𝑗∥𝑥𝑖 − 𝑐𝑗∥2, 1 ≤ 𝑚 < ∞

where 𝑢𝑖𝑗 is the degree of membership of 𝑥𝑖 to the cluster
𝑗, and ∥ ⋅ ∥ represents any norm able to represent similarity
among any measured data and the center. Fuzzy partitioning is
achieved by an iterative optimization procedure where at each
step 𝑢𝑖𝑗 and 𝑐𝑗 are updated as follows

𝑢𝑖𝑗 =
1

∑𝐶
𝑘=1

( ∥𝑥𝑖−𝑐𝑗∥
∥𝑥𝑖−𝑐𝑘∥

) 2
𝑚−1

, 𝑐𝑗 =

∑𝑁
𝑖=1 𝑢

𝑚
𝑖𝑗 ⋅ 𝑥𝑖∑𝑁

𝑖=1 𝑢
𝑚
𝑖𝑗

Furthermore, one of the important characteristics of an image
is that neighboring pixels are highly correlated. This spatial
relationship is not utilized in the conventional FCM algorithm,
where the noise can lead to a misclassification. To reduce
the effect of noise in [14] the authors apply a spatial FCM
algorithm to breast segmentation in ultrasound images, by
altering the membership weighting of each cluster. So, the
new spatial membership degrees become

𝑢′𝑖𝑗 =
𝑢𝑝𝑖𝑗 ⋅ 𝑓𝑞(𝑢𝑖𝑗)∑𝐶
𝑘=1 𝑢

𝑝
𝑖𝑘𝑓

𝑞(𝑢𝑖𝑘)

where 𝑓(𝑢) is a spatial weight function here defined as the
median filter apply to the image of membership degrees 𝑢𝑖𝑗 ,
while 𝑝 and 𝑞 are parameters to control the relative importance
of 𝑢 and 𝑓 terms. In our setting, we choose 𝑝 = 0.1 and
𝑞 = 0.9. The iterations stop when max ∣𝑢′𝑘+1

𝑖𝑗 − 𝑢
′𝑘
𝑖𝑗 ∣ < 𝜖 for

a given 𝜖 ∈ (0, 1]). When the procedure stops rows of matrix
𝑈 = {𝑢𝑖𝑗} contain the membership degree of each element
𝑥𝑖 to every class 𝑐𝑗 . A final decision is taken considering for
example the maximum membership degree for each 𝑥𝑖.

This procedure allows us to roughly grouping pixels inside
the image belonging to the fibro-glandular disc. The key point
is the choice of the number of classes in the SFCM algorithm
that, to our experience, should depend on the breast density.
Our model uses the hypotheses that the number of classes in
the effective region of the breast can vary from two to four
according to the density assessment in BIRADs: uncompressed
fatty tissues, fatty tissues, non-uniform density tissues, high
density tissues. We have investigated the use of validity
measures like the Classification Entropy that measures the

fuzzyness of the cluster partition [15], the Partition Index that
represents the ratio of the sum of compactness and separation
of the clusters [16], the Separation Index that uses a minimum-
distance separation for partition validity [16], and finally the
Dunn’s Index, an identifier of “compact and well separated
clusters” and the simplified Alternative Dunn’s Index [17]. At
the moment the final number of classes is chosen considering
the minimum value reached by the sum of the above metrics.
Fig. 2(d) shows the fibro-glandular disc extracted using the
SFCM algorithm using 2 classes.

D. Gabor filters for the extraction of the oriented pattern in
the fibro-glandular disc

At present, the most innovative technique described in the
literature to evaluate bilateral asymmetry has been developed
by Rangayyan [9]. The method implements a directional
analysis using a multiresolution approach based on Gabor
wavelets. Following an analogous procedure, here we propose
the use of Gabor filters with a single scale related to the
average width of fibro-glandular tissue [18]. 2D Gabor filters
are a category of filters obtained from a sinusoidal plane wave
of some frequency and orientation within a two dimentional
Gaussian envelope. The real Gabor filter kernel oriented at the
angle 𝜃 = −𝜋/2 is given by

𝑔(𝑥, 𝑦) =
1

2𝜋𝜎𝑥𝜎𝑦
exp

[
−1

2

(
𝑥2

𝜎2
𝑥

+
𝑦2

𝜎2
𝑦

)]
cos(2𝜋𝑓𝑥)

Filters at other angles are obtained by rotating this kernel over
the range [−𝜋/2, 𝜋/2] by the angles 𝛼𝑘 = −𝜋/2 + 𝜋𝑘/180,
𝑘 = 0, 1, . . . , 180 − 1. Letting 𝜏 be the full-width at half-
maximum of the Gaussian term, the parameters of the Gabor
filter kernel are defined as follows: 𝜃𝑥 = 𝜏/(2

√
2 ln 2), 𝜃𝑦 =

𝑙𝜃𝑥 and 𝑓 = 1/𝜏 . In this work we use 𝑙 = 8 and 𝜏 = 3
for 180 equally spaced filters over the angular range defined
above, obtaining a bank of real Gabor filters from which the
Gabor-filtered images 𝑊𝑘(𝑥, 𝑦) are calculated. The resulting
orientation field is given by the angle

𝜙(𝑥, 𝑦) = 𝛼𝑘𝑚𝑎𝑥
, 𝑘𝑚𝑎𝑥 = 𝑎𝑟𝑔{max

𝑘
[𝑊𝑘(𝑥, 𝑦)]}

and by the magnitude of the output of the real Gabor filter
at the optimal orientation. In Fig. 2(e) the Gabor magnitude
inside the fibro-glandular tissue, obtained after the directional
analysis, is shown.
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Fig. 3 reports two preliminary examples of the fibro-
glandular disc extraction for asymmetric and normal cases
from Mini-MIAS database, showing the original images and
the Gabor magnitude of the extracted fibro-glandular discs.
Fig. 4 shows the associated rose diagrams, representing the
angular distribution of the oriented tissue extracted from the
Gabor filters analysis of both the right and the left breasts in
the same projection.

Fig. 3. Example of a normal and an asymmetric case and the Gabor
magnitude of the fibro-glandular discs
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Fig. 4. Rose diagrams for a normal and an asymmetric case.

Note that the rose diagram exhibits a symmetric angular dis-
tribution for the normal case, while it is strongly asymmetric
when bilateral asymmetry is present.

E. Alignment of fibro-glandular discs

Denote with 𝛿 the difference among the left and the right
pectoral muscle line orientations, after performing a proper
mapping of the left image on the right one. This angle is
used to correct the angular distribution of the fibro-glandular
discs taking into account the pectoral muscle orientation. One
example is reported in Fig. 5.

F. Features extraction

Starting from the difference rose diagrams (obtained sub-
tracting the two rose diagrams of the left and right mammo-
grams) and from the fibro-glandular discs, the extraction of

Fig. 5. Example of the alignment procedure accounting for the lack of
symmetry between the pectoral muscle line orientations.

the most relevant features to detect the regions of asymmetry
in the breast can be divided into four steps.

1) Compute statistical features on the difference rose dia-
grams [9].

2) Compute morphological measures and geometric mo-
ments of the segmented fibro-glandular discs.

3) Select the most relevant features using the modified
stepwise regression procedure described in [19].

4) Perform the principal component analysis (PCA) [20]
to transform the selected features into uncorrelated vari-
ables.

At present, the following features have been computed:

i) Entropy 𝐻 , first, and second angular moments of the
difference of the two rose diagrams 𝑀1 and 𝑀2, dom-
inant orientation 𝜃𝑅, and circular variance 𝑠2𝜃, defined
in [9]: these parameters relate to the angular distribution
in the residual rose diagram taking into account for the
statistical angular difference among left and right fibro-
glandular discs. The parameters are not evaluated on the
aligned rose diagrams.

ii) The same features in i) but evaluated on the rose
diagrams aligned according to 𝛿.

iii) The seven Hu’s moments [21] 𝜙1, . . . , 𝜙7 used to quan-
tify the difference of the shape and of the texture in the
two fibro-glandular discs.

iv) The difference of eccentricity, stretch parameter, density,
and area of the two fibro-glandular discs [9].

G. Pattern classification for the bilateral asymmetry identifi-
cation

In order to assess the asymmetry degree of the two breasts
we use a classifier that, according to the selected features,
assigns to the patient the probability of the presence of a
bilateral asymmetry. The leave-one-out methodology is used
to estimate the classification accuracy because the number of
samples is relatively small, while classification is performed
using a linear Bayes classifier [20].
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Sensitivity Specificity

𝐻 not aligned 0.68 0.77

𝑀1 not aligned 0.73 0.64

𝑀2 not aligned 0.68 0.73

𝑠2 not aligned 0.72 0.82

Eccentricity 0.54 0.54

𝜙1 0.54 0.59

TABLE I
RESULTS OF THE UNIVARIATE ANALYSIS. ONLY THE MOST SIGNIFICANT

FEATURES ARE SHOWN.

V. RESULTS

In this study, we only report preliminary results related to
the fibro-glandular discs segmentation, the characterization of
the two angular distributions, and the features extraction. Fu-
ture works will address the problem of asymmetry assessment.

In particular, an univariate analysis has been performed to
evaluate the performance of each feature for the asymmetry
assessment, in terms of Sensitivity and Specificity

Sensitivity
.
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
Specificity

.
=

𝑇𝑁

𝑇𝑁 + 𝐹𝑃

where:

∙ 𝑇𝑃 (True Positive) is the pair of mammograms where an
expert radiologist has reported an asymmetry in the left
or in the right breast and the algorithm does the same;

∙ 𝐹𝑃 (False Positive) is the pair of normal mammograms
that the algorithm marks as asymmetric;

∙ 𝑇𝑁 (True Negative) is the pair of normal mammograms
that the algorithm marks as normal;

∙ 𝐹𝑁 (False Negative) is the pair of mammograms in
which an expert radiologist identifies an asymmetry and
the algorithm marks as normal.

Tab. I reports the sensitivity and the specificity of the
most significant features. Preliminary results are obtained
performing a stepwise regression analysis followed by a PCA
of the selected features from the 21 identified, for the 44 pairs
of images taken from the Mini-MIAS database. The pattern
classification step has been performed using a linear Bayes
classifier thus obtaining: Sensitivity = 0.82 and Specificity =
0.82.

VI. METROLOGICAL VALIDATION

The metrological validation of the whole procedure is based
on the propagation of all the uncertainty contributions through
the blocks of the algorithm. Suitable methods have to be
implemented according to the typologies of blocks considered.
For direct or iterative computational blocks a Monte Carlo
simulation is recommended [22], while for the propagation
of random contributions through rule-based systems novel ap-
proaches recently developed by Ferrero [23] and later applied
in [24] are more suited.

An exhaustive validation procedure should face the follow-
ing aspects:

- UNCERTAINTY ESTIMATION. Three uncertainty con-
tributions can be outlined:

i) the pixel depth in the range [8 − 16] 𝑏𝑝𝑝;
ii) the image power noise, estimated by specific algo-

rithms [25], tailored for heteroscedastic noise con-
tributions (noise variance changes with luminance);

iii) the tolerance in the identification of the pectoral
muscle orientation affecting the computation of
aligned features.

- UNCERTAINTY PROPAGATION. The output of this
step provides an interval of confidence around the asym-
metry degrees produced by the classifier, taking into
account uncertainty contributions i)-iii).

In this study, we have performed an analysis of sensitivity of
the aligned features and of the final asymmetry assessment
performance, with respect to contributions iii). Future works
will consider the other uncertainty contributions and their
propagation.

In particular, a Monte Carlo simulation has been developed
thus producing the trend of the sensitivity and of the specificity
of the aligned features 𝐻 , 𝑀1, 𝑀2, 𝜃𝑅, and 𝑠2𝜃 versus the
pectoral muscle line orientation varying the 𝛿 of the alignment
among left and right rose diagrams around its nominal value
𝛿0 in the range [𝛿0−5∘, 𝛿0+5∘] with a step of 0.5∘. Results of
the sensitivity analysis are reported in Fig. 6. A Monte Carlo
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Fig. 6. Sensitivity and specificity of aligned features varying the alignment
angle 𝛿 related to the difference between the two pectoral muscle line
orientations.

simulation has been then implemented in order to extract the
distribution of the sensitivity and of the specificity of the final
assessment procedure, varying the alignment angle and consid-
ering only features 𝐻 , 𝑀1, 𝑀2, 𝜃𝑅, and 𝑠2𝜃. Numerical results
are reported in Tab. II while the cumulative distribution of the
sensitivity and of the specificity along with the confidence
bounds associated to level of confidence 90%, 80%, 70% are
reported in Fig. 7.
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Sensitivity Specificity

𝐼90% - Mean [ 0.701 1.000 ] 0.778 [ 0.571 0.886 ] 0.743

𝐼80% - Mean [ 0.703 0.966 ] 0.778 [ 0.596 0.872 ] 0.743

𝐼70% - Mean [ 0.709 0.936 ] 0.778 [ 0.619 0.856 ] 0.743

TABLE II
CONFIDENCE INTERVALS AND MEAN VALUE FOR SENSITIVITY AND

SPECIFICITY AFTER THE PATTERN CLASSIFICATION STEP, VARYING THE

PECTORAL MUSCLE LINE ORIENTATION
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Fig. 7. Cumulative distribution for the sensitivity and the specificity along
with the confidence bounds for three confidence levels 90%, 80%, 70%

VII. CONCLUSIONS

In this study, preliminary results of a novel methodology
regarding the automatic bilateral asymmetry identification in
mammograms have been reported. The whole methodology
has been described and a sketch of the metrological valida-
tion has been provided. An analysis of sensitivity has been
also included considering the tolerance in the determination
of the alignment angle which corresponds to the difference
between the left and right pectoral muscle line orientations.
A preliminary pattern classification procedure has been also
implemented, providing the results in terms of sensitivity and
specificity along with their confidence intervals for various
confidence levels varying the alignment angle.
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